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Abstract. If the free electron gas is enclosed in a box of finite volume the Dirichlet boundary 
condition imposed on the wavefunction modifies the density of states (it increases the 
energy levels). This is also true in presence of a uniform magnetic field and gives rise to 
the perimeter corrections ,y’ to the Landau diamagnetic susceptibility ,yo. We analyse the 
effect for the zero-field susceptibility by a Green function approach rather than by enumerat- 
ing the energy levels. The perimeter contribution x’  to the susceptibility is always positive 
(paramagnetic). The relative correction ,$/,yo is given by (apart from a constant of order 
unity) 1 x surface area/volume, where 1 is a characteristic length and is equal to the thermal 
de Broglie wavelength at high temperatures and to the Fermi wavelength in another extreme 
of complete degeneracy. Thus the effect may be observable in small metallic particles of 
size 10-100 A, in particular if the electron effective mass is small such as, e.g., in bismuth. 

1. Introduction 

After Landau’s original paper (1930) on the orbital diamagnetism of the free electron 
gas the effect was studied by Darwin (193 1) and van Vleck (1932) confirming Landau’s 
‘surprising’ prediction (cf Peierls 1979). (Peierls (1933) discussed the effect for Bloch 
electrons and also considered the influence of the collisions.) Later the interest was 
in the boundary effects as studied in papers by Dingle (1952, 1953). 

The present paper is concerned with the perimeter corrections to Landau diamagnet- 
ism. We will analyse the effect by a method based on the Green function formalism. 
The idea is to use the fact that the partition function 2 can be expressed exactly as 
the trace of the Green operator with imaginary time t = -it$; p = l/kT, k is the 
Boltzmann constant and T is the temperature. The correct Green function can be 
approximated by the Green function for unrestricted motion (no boundaries) plus the 
perimeter corrections necessary to account for the imposed Dirichlet boundary condi- 
tion. The latter are worked out in the next section. This approach avoids the difficult 
problem of calculating and enumerating the individual energy levels and the summation 
in the partition function. 

First we se;up the necessary fundamental relations. The Green function of a given 
Hamiltonian H can be expressed in terms of the orthonormal basis of eigenfunctions 
+j(r), 

G(r,  r‘, t )  =c Gj(r)+T(r’) exp( -iEjt/h) 
j 

where 
A 

H+j = Ej+j. 
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Clearly, by setting 
t = -ihp (3) 

where /3 = 1/ kT, one finds for the partition function 

Z=Tr(e-@) = 5 G(r, r, - ihp )  d3r. (4) 

The free energy F as derived from the canonical partition function (4) is 

where Ne, is the total number of electrons, while in the case of a degenerate gas one 
has (see, e.g., Peierls 1955, p 147) 

p(E)log{l+exp[-P(E-rl)]}dE 

where p ( E )  is the density of states (per unit energy) and 7 is the chemical potential 
at given temperature. The susceptibility is given by 

1 aF X = - B z  (7) 

and can be obtained at high temperatures from ( 5 ) .  In the degenerate case (6) F can 
also be expressed explicitly in terms of Z. We note that the density of energy levels 
p ( E )  is the inverse Laplace transform of Z, 

1 ~ + i c a  

E -im 
p ( E )  = X i l { Z ( P ) }  =% 1 d P Z ( P )  epE. (8) 

By expanding the logarithm into a power series we obtain 

(This series and similar series appearing later on might diverge for 7) > 0. The sum is 
then understood as the analytic continuation of the sum for 7 CO.)  

Next we need the Green function for an electron in a uniform magnetic field. For 
the enclosure we choose a cylinder formed by a parallel transport of its base (of 
arbitrary shape, area d and perimeter 9) along a distance L parallel to the magnetic 
field. We use the fact that the motions parallel and transverse to the field are decoupled 
so that the wavefunctions factorise, and so does the Green function (1). Thus 

(10) 
where G, is the Green function for the one-dimensional motion on the interval of 
length L (coordinate z), while G2 is the Green function for the two-dimensional motion 
in a plane enclosure (the base of the cylinder) with the uniform magnetic field pointing 
perpendicularly. In absence of boundaries these Green functions are well known (see, 
e.g., Feynman and Hibbs 1965): 

G(x, Y ,  z, x’, Y’, 2‘9 t )  = G,(s z’ ,  t)Gz(x, Y ,  x’, Y’,  t )  

m U T  U T  
G20 = - exp[ -2 (t [ ( x  - x ’ ) ’+  ( y  - y’)’] coth -- iw(xy’- y x ‘ )  

2 r h r  s inh(m/2)  2 
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where o = e B / m c  is the cyclotron frequency and T = it, so that (11) and (12) are 
actually Green functions for the diffusion equation with T playing the role of time. 

By applying (4) with T =  hp  and integrating over the domains of definition one 
gets for the partition functions corresponding to (11) and (12), 

z , ~ =  ~(m/"r rh 'p)" '  (13) 

2. The perimeter corrections to the Green function and the partition function 

The exact wavefunctions and the exact Green function (1) must obey the Dirichlet 
boundary condition. The Green functions (1 1) and (12) for the unrestricted motion 
give a good approximation to the exact result if T is sufficiently small and if (x ,  y ,  z )  
and (x ' ,  y ' ,  z')  do not lie too close to the boundary, so that the boundary condition 
may be ignored. They can be regarded as the lowest terms (bulk terms) in an expansion 
of the exact Green function. The next term, called perimeter correction, must account 
for the Dirichlet boundary condition. Such systematic expansions have been studied 
by Balian and Bloch (1970) for the free particles in enclosures with zero magnetic 
field. We shall generalise the results to the case of plane enclosures with uniform 
magnetic field. 

So let us consider a charged particle in a scalar potential V (  r )  and uniform magnetic 
field B in a plane domain D with boundary aD. (By r we denote the position vector, 
r = (x, y ) . )  Let I? denote the Hamilton operator in the absence of the boundaries, i.e. 

where A = 4B x r = +( - By, Bx, 0 )  is the vector potential. The Green function Go for 
the unrestricted motion (no boundaries) satisfies 

a 
a t  

I?Go( r, r', t )  = ih - Go( r, r', t )  Go( r, r', 0) = 6( r - r' )  (16) 

and is assumed to be known. Now, how can we construct the Green function G for 
the restricted motion (G vanishes on aD) in terms of Go? Obviously, we must have 

(17) G( r, r', t )  = Go( r, r',  t )  + G'( r, r', t )  

such that G' also satisfies the Schrodinger equation for all r E D and 

if r or r' on aD. (18) G'( r, r', t )  = -Go( r, r ' t )  

Following the related ideas by Balian and Bloch (1970) we attempt the ansatz 

aGo( r, a, t - T )  

an, G ' ( r ,  r', t )  = lof dT ds, CL(&, r', 7) 

where aGo/an, denotes the normal derivative of Go at the point a on the boundary 
aD with the normal oriented towards the interior region and ds, is the differential of 
the arc length s,. The expression (19) does indeed obey the Schrodinger equation 
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fiG‘ = ih aG’/at for all r E D and for all t. By an appropriate choice of the density p 
we can obtain G’ so that it will satisfy the boundary condition (18).  It is easy to show 
(see Balian and Bloch 1970) that if f l  E aD then 

Notice that this is just the Fourier transform of the similar formula in Balian and 
Bloch (1970), who deal with the time-independent Green function. Their Green 
function is assumed real, while ours is complex, but the formula holds for that case 
as well. The essential point in deriving the integral equation for the time-independent 
but complex case is that the singular part of the Green function as r - )  r’ is real. By 
applying the Fourier transformation we then obtain (20). See the appendix for details. 
This integral equation for p can be solved iteratively resulting in a muZtipZe rejection 
expansion (Balian and Bloch 1970). But the lowest approximation is simply 

P(B,  r’, t )  = -2Go(B, r ’ ,  t ) .  (21) 

Inserting (21) in (19) yields the perimeter correction 

aGo(r, a, t - T )  

an, 
G’( r, r ’ ,  t )  = -2 lor dT I,, ds, Go(a, r’,  7) .  

Including the higher terms of the multiple reflection expansion for G’ would give rise 
to curvature corrections, comer corrections, etc, which we ignore at pr!sent. It is easy 
to verify explicitly that (22) does satisfy the Schrodinger equation HG’ = ih aG‘/at 
everywhere in the interior of D and that it has the correct symmetry: according to (1) 
any Green function is Hermitian, and in particular we must find G( r, r’ ,  t )  = G*( r’, r, t ) .  
This can be easily verified by using the Hermitian property for Go and aGo( r, a, t - 
T ) / a n ,  = -aG$(a, r, t - T) /an , ,  together with the change of variables t - T +  T in (22).  
The quantity we need is the trace of the Green operator, 

This is obviously a real number, due to the Hermitian symmetry of the Green operator 
G’. Let us now evaluate (23 )  for the specific case of vanishing potential V (  r )  = 0 and 
uniform magnetic field B. From (12) one sees that Go can be written as follows: 

Go(r, r ‘ ,  t )  = exp[io.(r x r’ ) ] fo( I r -  r’ l ,  t )  (24) 
where fo is a real function and o = (0, 0, o) = (0, 0, eB/mc). From (23 )  we get 

so that the complex (‘magnetic’) phase factor is completely eliminated in this trace 
formula. This allows us to arrive at the important conclusion that the perimeter 
corrections 2’ to the partition function 2, in the case of the uniform magnetic field 
are exactly the same as for the real Green function fo( I r - r ’ l ,  t) .  But the perimeter 
corrections of the latter can be obtained (to the same degree of accuracy) by employing 
the method of images (Baltes and Hilf 1976, Balian and Bloch 1970). This method is 
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based on the idea of replacing a piece of the boundary by its local tangent and setting 
fl = -fo( I r - rkl, f), where rk is the mirror image (across the tangent) of r‘. Clearly, 
f=fo+f l  vanishes if r or r’ is on the boundary. The approximation hinges upon the 
assumption that the Green function decays rapidly with I r - rkl so that its value soon 
becomes negligible as r moves away from the boundary. It is assumed that the typical 
decay length is much less than the local radius of curvature. The conclusion is that it 
is not necessary to calculate 2’ using the formula (25 )  but simply 

z’( f )  = - d‘rf,( r, r R ,  t )  (26)  L 
where r R  is the mirror image of r across the boundary. We identify fo in (12)  and, 
when integrating in (26) ,  we change the coordinates to the arclength s and the distance 
R along the normal from the boundary, and finally invoking the rapid decay o€fo to 
allow for the extension of the R integration limit to 00, we find 

The integration is trivial and we obtain, after inserting r = hp,  

The perimeter correction to the Green function Glo for the one-dimensional free 
motion, given in ( l l ) ,  can be obtained trivially by the method of images. The result 
for the partition function is 

(29 )  z,, = -1 2. 

Consequently we have for the partition functions 

Z1(P 1 = L( &) ”’[ 1 - 1 (->) 2rh’P 3 
and 

The total partition function is 

Z(P) = ZI(P)Z’(P). 

3. The perimeter correction to the Landau susceptibility 

The result for the susceptibility ( 7 )  at high temperatures (using ( 5 ) )  follows immediately 
by noting that Z1 is independent of the field and does not contribute to ( 7 ) .  The 
substitution of (31 )  into the expression ( 5 )  followed by the differentiation ( 7 )  yields 

where 1 = ( r h 2 / 2 m k T ) ’ / ’  is the thermal de Broglie wavelength. As E/d+O the 
paramagnetic (perimeter) correction vanishes and we recover the high temperature 
Landau susceptibility as given by Darwin (1931) (see also Peierls 1979) (pB is the 
Bohr magneton pB = eh /2mc) .  
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In case of degeneracy one has to use the expression (9) with 2 as given by (30)-(32). 
We need to know the chemical potential r ]  which is determined by the implicit equation 

dF 

ar] 
_-  - 0  

whence from (6) 

1 +exp[P(E - T ) 1 .  

At zero temperature ( p  = 03) the bulk value for the Fermi energy T~ is equal to 

(34) 

(35) 

where V = L d  is the volume of the cylinder enclosure. When the perimeter corrections 
are included in the density of states p ( E )  (cf Balian and Bloch 1970) 

where S = L T +  2 d  is the surface of the cylinder, we find 

In calculating the susceptibility (7 )  we may ignore the dependence of 77 on U ,  because 
of (34). So in using (9) we only have to take the derivative of 2 at w = 0, 

1 az 2, az2 
w aw w aw 

- 

where 

(39) 

In (39) we shall only keep terms linear in the perimeter corrections, i.e. we shall neglect 
the term ZlldZ21/a~. In this way we obtain at last 

x = x o + x 1  (41 1 

In absence of surface effects when r] has just its bulk value, (42) is eaual to the (bulk) 
Landau diamagnetic susceptibility. Its value at zero temperature is (see, e.g., Peierls 
1955) 
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where 
ko= ( 2 m ~ 0 ) ‘ / 2 / h  = (3.r2Ne,/ V)2’3 (45) 

is the Fermi wavenumber. The correction x, as given by (43) is always finite, only 
x,/x0 vanishes as S / k , V + O .  But (43) is not the complete perimeter correction to the 
Landau diamagnetism, because 7 itself in (42) has surface corrections, which at zero 
temperature are given by (38 ) .  When this is taken into account we obtain the susceptibil- 
ity at zero temperature as follows: 

where XLandau is the bulk Landau susceptibility as given in (44) and ko is the (bulk) 
Fermi wavenumber as given by (45). Thus the perimeter correction to the Landau 
diamagnetism at zero temperature is equal to 

and is always paramagnetic. We will explain this in the next section. It is interesting 
that the surface paramagnetism at zero temperature as given in (47) is independent of 
h :  substituting (44) in (47) we obtain 

e2 
48 r m c 2  

( d + S L Y )  -~ 
Xsurfacz - 

which indicates an apparently classical effect in contradiction with the Miss-van 
Leeuven theorem (Peierls 1979). This is, however, no more paradoxical than the fact 
that the Landau susceptibility (44) is independent of h (the Fermi wavenumber (45) 
does not depend on h ) .  The behaviour of the susceptibility at zero temperature as a 
function of A, in the limit of h + 0, is obviously non-analytic: at any h Z 0 we have a 
discrete energy spectrum and the complete degeneracy as a consequence of the Pauli 
exclusion principle, which give rise to (44). When h = 0 the spectrum is continuous. 
Since there is no classical analogy of the exclusion principle all electrons are in the 
lowest energy state, i.e. they are at rest, implying zero magnetic moments and non- 
existence of the magnetism. On the other hand, the susceptibility does behave analyti- 
cally as a function of h as h + O  for finite temperatures and in the absence of the 
degeneracy: according to (33) the bulk term vanishes as x - h 2  when h + 0, and the 
surface term goes to zero as x - h3 .  

These results differ from those of Dingle (1952, 1953), who does not obtain (as a 
lowest term) a field-independent perimeter correction to the Landau diamagnetic 
susceptibility. From (33) or (46) we see that the relative perimeter contribution to the 
susceptibility of the free electron gas has the order of magnitude Z/d, where d is a 
typical macroscopic dimension and 1 is the thermal de Broglie wavelength, or in another 
extreme the Fermi wavelength. Thus the effect may be observable in small metallic 
particles of size 10-100 A. A more convenient geometry would be that of thin layers 
(thickness lo-lOOA), with magnetic field parallel to their plane, in which case one 
can control the geometry more reliably, eliminating the statistical effects. Another 
interesting effect is expected when each electron ‘sees’ an effective enclosure smaller 
than that given by the macroscopic boundaries. This is the case of localised states in 
a sufficiently disordered system. (The existence of localisation in multidimensional 
systems has been recently proved by Delyon et a1 (1989.)  Qualitatively one expects 
paramagnetic corrections of relative order l / d ,  where d is now the localisation length. 
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4. Certain aspects of Landau condensation: why the perimeter corrections are always 
paramagnetic 

From the formalism which we have employed to calculate the susceptibility it is clear 
that the perimeter corrections to the susceptibility are paramagnetic if dZ/dw is less 
than dZlandau/dw, where Z is the partition function of an electron in the plane enclosure 
with uniform field, while ZLandau is the partition function in which the surface correc- 
tions are neglected. Hence we must show that imposing the Dirichlet boundary 
conditions implies 

( 4 9 )  
- d Z <  dZLandau 
dw dw 

A free electron in a magnetic field has the Landau energy spectrum 

E , = ( n + ; ) h w  n = o ,  1 , 2 ,  * .  . ( 5 0 )  

where each Landau level is infinitely degenerate. The effect of an enclosure is, to the 
lowest approximation, in lifting the infinite degeneracy, so that there are then only 

d e B  
g=zz 

levels per Landau level. Hence the corresponding partition function is equal to 

which was also given in ( 1 4 ) .  
There are a few critical remarks. The degeneracy is not exact, but one finds 

exponentially small (exp( -constant x w ) )  splitting of levels instead. Some of the levels 
lie very close to the Landau level. Such Landau condensation is less pronounced the 
higher the energy. Therefore, the degeneracy number g has, as n + m ,  merely the 
meaning of the average number of levels per one Landau level and in this asymptotic 
limit there is no Landau condensation at all. Figure 1 illustrates aspects of Landau 
condensation for low levels for the circular enclosure (integrable), in which case the 
spectrum can be analysed exactly. In figure 2 we show Landau condensation for the 
rectangular enclosure, which is a classically non-integrable system (Robnik 1986). ( I  
plan to offer in a separate paper a more detailed discussion with a general semiclassical 
theory of Landau condensation.) Thus the spectrum can be written as 

E n j = ( n + ~ ) f i w + f n j ( w )  ( 5 3 )  
where n = 0 , 1 , 2 , .  . . , is the Landau level quantum number, while f n j ( w )  is the field- 
dependent correction, where the second quantum number j = 1 , 2 , .  . . , g. 

Now there is one universal aspect of Landau condensation (in hard walled poten- 
tials), namely that for any w 

f n j ( w )  > 0 ( 5 4 )  
and for sufficiently large w 

f ' f , ( w ) < O .  dw ( 5 5 )  
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Figure 1. Landau condensation for the low lying states of a circular enclosure. p = 
e B d / a h c ,  where d is the area of the circular disc, is a dimensionless measure of the 
magnetic field strength B, while the energy E is in units of a h 2 / 2 m l .  

100 

E 
50 

0 
20 10 

P 

Figure 2. Landau condensation of the positive-panty states for the non-integrable case of 
the rectangular enclosure of sides 2a and 26 , where a = 1 and 6 = a - 1. The unit of 
energy E is h 2 / 2 m a 2 ,  while p = eBa2/hc.  
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Indeed, f n j ( w )  must be positive for the very general reason that imposing a more 
restrictive boundary condition on an eigenfunction raises the corresponding energy 
(cf Courant and Hilbert 1953). The order of magnitude o f f n j ( w )  follows from the 
observation that a Landau orbital (eigenfunction of a free electron in a magnetic 
field) decays as exp[ - ( e B / h c ) r * ]  with distance r, so by a perturbation analysis 
j,( w )  cc exp( -constant x w ) .  We can also conclude that the correction f n j ( w )  is larger 
the more extended the Landau orbitals are, i.e. the larger the Larmor radii or the 
smaller the magnetic field. This explains the inequality (55) .  It follows trivially, by 
using (54) and (55 ) ,  that 

satisfies (49). Therefore the perimeter corrections must be paramagnetic for sufficiently 
large w,  at least. In case of cylinder enclosure (integrable) one can show that this 
applies strictly down to w = 0, as (55)  holds for all 0. A more general theory of Landau 
condensation will be given in a separate paper. 
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Appendix. Derivation of the integral equation (20) for the double layer density p 

Equation (20) can be obtained trivially from the corresponding equation for the 
time-independent Green function 

by applying the Fourier transform to (Al) ,  and taking into account the causality 
requirements that both Go( r, r’, t) and p (  r, r’, t )  are zero if t < 0. Hence our task is 
to derive ( A l )  for the case of the complex time-independent Green function for the 
Hamiltonian (15) .  (In the following we omit explicit writing of the energy E, so 
Go( r, r’) stands for Go( r, r’, E), etc.) By definition we have 

h2  
2m 

(A - E)Go(  r, r‘) = -- a( r - r‘) 

where 2 is given in (15). It follows that the singular part of Go(r, r‘) as r+ r’ must 
be real; more precisely 

1 
2 T  

Go( r, r’) + - f( r, r’) In I r - r’ I as r + r ’  (A31 

where f(r, r‘) may be complex but must obey 

f(r, r’)+ 1 as r+ r’. 

Indeed, by inserting (A3) into (A2) and integrating both the LHS and RHS over a small 
disc around r’ we correctly obtain the identity 1 = 1 .  (Clearly, the delta function on 
the RHS of (A2) is produced by the action of the Laplace operator on (A3).) 
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Now the Green function G( r, r ’ )  for the restricted problem with Dirichlet boundary 
conditions is constructed from Go(r, r’)  as follows: 

G = G o + G ’  (A51 
where G’ is sought in the form 

and must satisfy 
G’( r, r ‘ )  = -Go( r, r ’ )  if r e a D  

to ensure that the Dirichlet boundary condition is satisfied. p is a smooth function, 
while Go has a (real) singularity as given by (A3). The integral (A6) exists if r is a 
point ro on the boundary aD but its value differs from the limit r + ro when r approaches 
ro from the interior of D. The jump 

J = lim G’( r, r ’ )  - G’( ro,  r ’ )  (A81 
r + r o  

is due to the singularity of Go and can be easily calculated using (locally) Cartesian 
coordinates and inserting (A3) into (A6) and further into (A8). Let r o = ( O , O ) ,  and 
the y axis be oriented parallel to the boundary. Then we have to calculate 

P(U,  r ‘ )  

and 

Since p(a, r ’ )  is a smooth function, the jump J is a consequence of the singularity 
(A?). So we can assume p to be constant a n d f =  1 ,  and we obtain (for the contribution 
from the singular part; the regular parts do not contribute to J )  

- 0  

because a, = 0. On the other hand, 

P - _  f f , - X  lim G’( r, r ‘ )  = /l. lim {E day  
r - ro=O 2 7 x 4  --p ( f f , - x ) 2 + ( f f y - y ) 2 - 2  

v - 0  

Thus 

J = +p*(ro, r ’ )  roEaD. (A131 

( ~ 1 4 )  

Recall now that Go, G’ and G are continuous in the interior of D and that 

lim G’(r, r ’ )  = -Go(r,, r ‘ )  
I’ 10 

must be obeyed to satisfy the boundary condition (A7).  Therefore (A8), (A13) and 
(A14) imply 

roe aD. 

This is the desired integral equation ( A l )  for the double layer density p. 
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